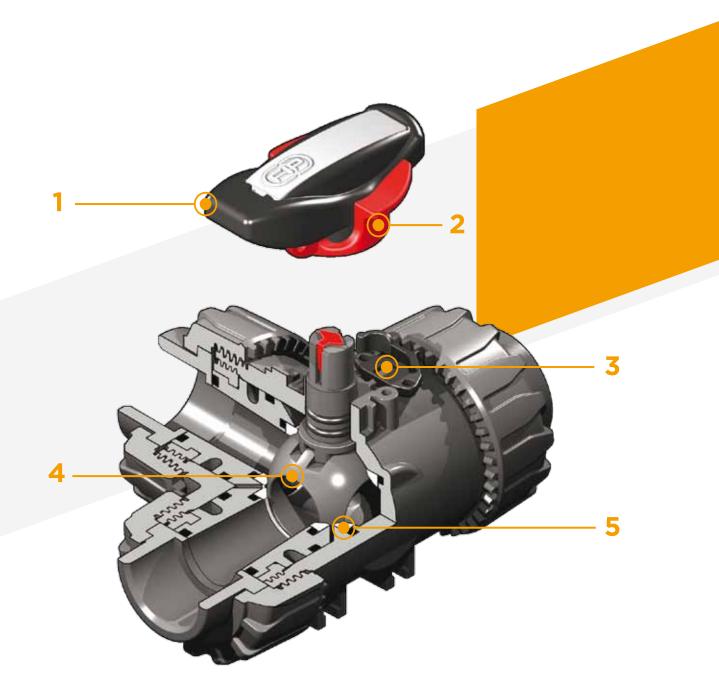


TKD **DN 15÷50**


FIP has developed a VKD DUAL BLOCK® ball valve to introduce a high reference standard in thermosplastic valve design. TKD is a True Union diverting and mixing ball valve that meets the most stringent needs required in industrial applications.

3-WAY DUAL BLOCK® BALL VALVE

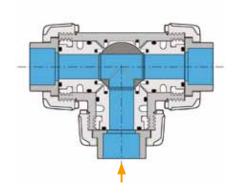
- Connection system for weld and threaded joints
- Patented SEAT STOP® ball seat carrier system that lets you micro-adjust ball seats and minimise axial force effects
- Easy radial disassembly allowing quick replacement of O-rings and ball seats without any need for tools
- **PN10 True Union valve body** made for PP-H injection moulding equipped with built-in bores for actuation. ISO 9393 compliant test requisites
- Option of disassembling downstream pipes with the valve in the closed position
- High surface finish stem with double O-Ring and double groove ball connection, equipped with optical position indicator for correct handle installation
- Integrated bracket for valve anchoring
- Possibility of installing pneumatic and/or electric actuators thanks to the robust integrated bracket for valve anchoring for easy and quick automation using the **Power Quick module** (optional)

Technical specifications	
Construction	3-way True Union ball valve with locked carrier and lockable union nuts
Size range	DN 15 ÷ 50
Nominal pressure	PN 10 with water at 20° C
Temperature range	0 °C ÷ 100 °C
Coupling standards	Welding: EN ISO 15494. Can be coupled to pipes according to EN ISO 15494
	Thread: ISO 228-1, DIN 2999
Reference standards	Construction criteria: EN ISO 16135, EN ISO 15494
	Test methods and requirements: ISO 9393
	Installation criteria: DVS 2202-1, DVS 2207-11, DVS 2208-1, UNI 11318
	Actuator couplings: ISO 5211
Valve material	PP-H
Seal material	EPDM, FPM (standard size O-Rings); PTFE (ball seats)
Control options	Manual control; electric actuator; pneumatic actuator

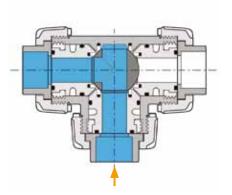
- Ergonomic HIPVC handle equipped with removable key to adjust the carrier of the ball seats. Possibility of installing the **LTKD stroke limiter** (available as an accessory) that permits ball and handle rotation only for set opening and closing angles at 90° or 180°
- 2 Handle lock 0°- 90° SHKD (available as an accessory) ergonomically operable during service and lockable
- **DUAL BLOCK®** patented lock system that ensures union nut tightening hold even in severe conditions such as vibrations or heat dilation
- 4 Ball shutter high surface finish with floating type full passage with T or L port
- 5 4 PTFE ball seat system
 that compensates axial
 force guaranteeing optimal
 manageability and long working
 life

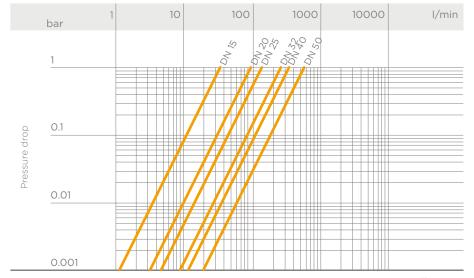
TECHNICAL DATA

PRESSURE VARIATION ACCORDING TO TEMPERATURE

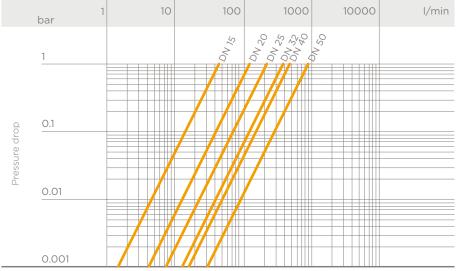

For water and non-hazardous fluids to which the material is classified as CHEMICALLY RESISTANT. In other cases, a reduction of the nominal pressure PN is required (25 years with safety factor).

	bar	-40	-20	0	20	40	60	80	100	120	140	°C
	16											
	14											
ø	12											
essur	10											
ng pr	8											
Working pressure	6											
	4											
	2											
	0								• • •			

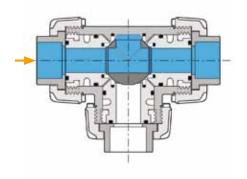

Working temperature


PRESSURE DROP GRAPH AND WORKING POSITIONS

A - T-port ball valve: O°- Mixing

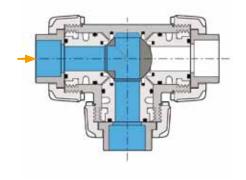


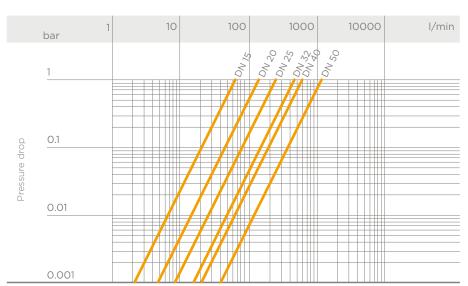
B - T-port ball valve: 90° - Diverting



Flow rate

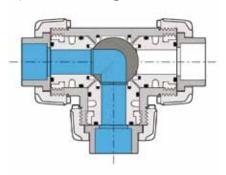
Flow rate

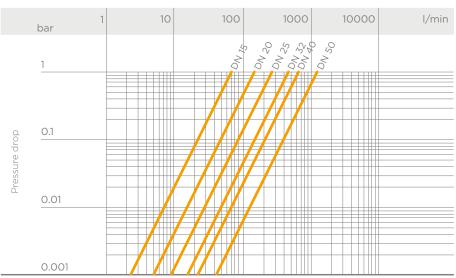

C - T-port ball valve: 180° - Branch closed/direct flow



	bar	1 10	100	1000	10000	l/min
	1			2 N N N N N N N N N N N N N N N N N N N		
d _o	0.1					
Pressure drop	0.01					
	0.001			/		

Flow rate


D - T-port ball valve: 270° - Diverting



Flow rate

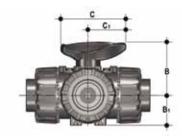
E - L-port ball valve: 0°/270° - Diverting

Flow rate

K_V100 FLOW COEFFICIENT

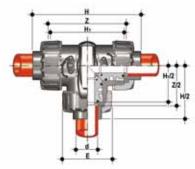
The K_v 100 flow coefficient is the Q flow rate of litres per minute of water at a temperature of 20°C that will generate Δp = 1 bar pressure drop at a certain valve position.

The K_v 100 values shown in the table are calculated with the valve completely open.


	DN	15	20	25	32	40	50
	Α	35	95	140	270	330	620
	В	55	135	205	390	475	900
K _v 100 l/min	С	195	380	760	1050	1700	3200
	D	65	145	245	460	600	1200
	Е	73	150	265	475	620	1220

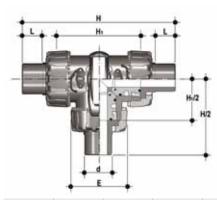
OPERATING TORQUE AT MAXIMUM WORKING PRESSURE

	Nm	15	20	25	32	40	50	DN
	40							
	36							
	32							
e	28							
Operating torque	24							
ting	20							
pera	16							
0	12							
	8							
	4							
	0							


The information in this leaflet is provided in good faith. No liability will be accepted concerning technical data that is not directly covered by recognised international standards. FiP reserves the right to carry out any modification. Products must be installed and maintained by qualified personnel.

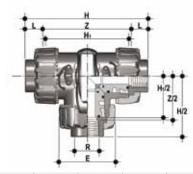
DIMENSIONS

Dimensions shared by all versions


d	DN	В	B ₁	С	C ₁
20	15	54	29	67	40
25	20	65	35	85	49
32	25	70	39	85	49
40	32	83	46	108	64
50	40	89	52	108	64
63	50	108	62	134	76

TKDIM - LKDIMDUAL BLOCK® 3-way ball valve with female ends for socket welding, metric series.

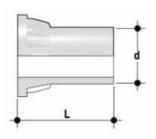
TKDIM - T-port ball/ LKDIM - L-port ball


d	DN	PN	Е	Н	H ₁	Z	g	TKDIM EPDM Code	TKDIM FPM Code	LKDIM EPDM Code	LKDIM FPM Code
20	15	10	54	117	80	88	195	TKDIM020E	TKDIM020F	LKDIM020E	LKDIM020F
25	20	10	65	144	100	112	350	TKDIM025E	TKDIM025F	LKDIM025E	LKDIM025F
32	25	10	73	158	110	122	505	TKDIM032E	TKDIM032F	LKDIM032E	LKDIM032F
40	32	10	86	184	131	143	820	TKDIM040E	TKDIM040F	LKDIM040E	LKDIM040F
50	40	10	98	219	148	172	1070	TKDIM050E	TKDIM050F	LKDIM050E	LKDIM050F
63	50	10	122	267	179	212	1795	TKDIM063E	TKDIM063F	LKDIM063E	LKDIM063F

TKDDM - LKDDM

DUAL BLOCK® 3-way ball valve with male ends for socket welding, metric series. TKDDM - T-port ball/ LKDDM - L-port ball

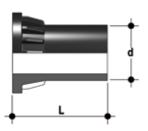
d	DN	PN	Е	Н	H ₁	L	g	TKDDM EPDM Code	TKDDM FPM Code		LKDDM FPM Code
20	15	10	54	140	80	16	205	TKDDM020E	TKDDM020F	LKDDM020E	LKDDM020F
25	20	10	65	175	100	18	360	TKDDM025E	TKDDM025F	LKDDM025E	LKDDM025F
32	25	10	73	188	110	20	515	TKDDM032E	TKDDM032F	LKDDM032E	LKDDM032F
40	32	10	86	220	131	22	835	TKDDM040E	TKDDM040F	LKDDM040E	LKDDM040F
50	40	10	98	251	148	23	1100	TKDDM050E	TKDDM050F	LKDDM050E	LKDDM050F
63	50	10	122	294	179	29	1830	TKDDM063E	TKDDM063F	LKDDM063E	LKDDM063F



TKDFM - LKDFM

DUAL BLOCK® 3-way ball valve with BSP threaded female ends. TKDFM - T-port ball/ LKDFM - L-port ball

R	DN	PN	Е	Н	H ₁	L	Z	g	TKDFM EPDM Code	TKDFM FPM Code	LKDFM EPDM Code	LKDFM FPM Code
1/2"	15	10	54	117	80	15	87	195	TKDFM012E	TKDFM012F	LKDFM012E	LKDFM012F
3/4"	20	10	65	143	100	16	114	350	TKDFM034E	TKDFM034F	LKDFM034E	LKDFM034F
1"	25	10	73	157	110	19	120	505	TKDFM100E	TKDFM100F	LKDFM100E	LKDFM100F
1"1/4	32	10	86	185	131	21	140	820	TKDFM114E	TKDFM114F	LKDFM114E	LKDFM114F
1"1/2	40	10	98	217	148	21	172	1070	TKDFM112E	TKDFM112F	LKDFM112E	LKDFM112F
2"	50	10	122	266	179	26	211	1795	TKDFM200E	TKDFM200F	LKDFM200E	LKDFM200F


ACCESSORIES

CVDM

End connectors in PP-H SDR 11 PN 10, long spigot, for butt welding

d	DN	PN	L	SDR	Code
20	15	10	55	11	CVDM11020
25	20	10	70	11	CVDM11025
32	25	10	74	11	CVDM11032
40	32	10	78	11	CVDM11040
52	40	10	84	11	CVDM11050
63	50	10	91	11	CVDM11063

CVDE

Long spigot PE100 SDR 11 PN 16 end connectors for joints with electrofusion fittings or for butt welding

d	DN	PN	L	SDR	Code
20	15	16	55	11	CVDE11020
25	20	16	70	11	CVDE11025
32	25	16	74	11	CVDE11032
40	32	16	78	11	CVDE11040
52	40	16	84	11	CVDE11050
63	50	16	91	11	CVDE11063

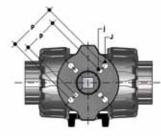
SHKD

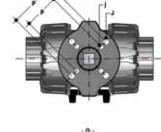
Handle block kit 0° - 90° lockable

d	DN	Code
16 - 20	15	SHKD020
25 - 32	20 - 25	SHKD032
40 - 50	32 - 40	SHKD050
63	50	SHKD063

LTKD

The LTKD stroke limiter specifically permits handle and ball rotation only at set opening and closing angles. The LTKD090 version permits operations for 90° angles while the LTKD180 version for 180° angles. The LTKD stroke limiter is made up of a single removable plate made of technopolymer. Designed for ISO 5211 bore and specifically designed to be directly housed on the valve body mounting flange. It is secured to the valve body by self-tapping screws or plastic rivets

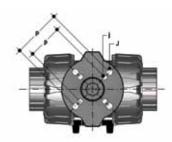

d	DN	Code 90°	Code 180°
16 - 20	15	LTKD090020	LTKD180020
25 - 32	20 - 25	LTKD090032	LTKD180032
40 - 50	32 - 40	LTKD090050	LTKD180050
63	50	LTKD090063	LTKD180063



PSKD

Stem extension

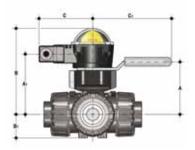
d	DN	А	A ₁	A ₂	Е	В	B ₁	B min	Code
20	15	32	25	32	54	70	29	139.5	PSKD020
25	20	32	25	40	65	89	34.5	164.5	PSKD025
32	25	32	25	40	73	93.5	39	169	PSKD032
40	32	40	32	50	86	110	46	200	PSKD040
50	40	40	32	50	98	116	52	206	PSKD050
63	50	40	32	59	122	122	62	225	PSKD063



POWER QUICK CPThe valve can be equipped with pneumatic actuators, using the PP-GR module reproducing the drilling pattern foreseen by ISO 5211

d	DN	B ₂	Q	Т	рхј	РхЈ	Code
20	15	58	11	12	F03 x 5,5	F04 x 5,5	PQCP020
25	20	69	11	12	*F03 x 5,5	F05 x 6,5	PQCP025
32	25	74	11	12	*F03 x 5,5	F05 x 6,5	PQCP032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCP040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCP050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCP063

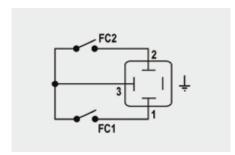
*F04 x 5.5 upon request

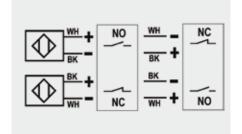


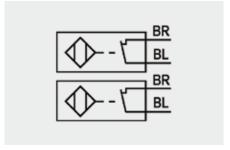
POWER QUICK CE

The valve can be equipped with electric actuators, using the PP-GR module reproducing the drilling pattern foreseen by ISO 5211

d	DN	B ₂	Q	Т	рхј	РхЈ	Code
20	15	58	14	16	F03 x 5,5	F04 x 5,5	PQCE020
25	20	69	14	16	*F03 x 5,5	F05 x 6,5	PQCE025
32	25	74	14	16	*F03 x 5,5	F05 x 6,5	PQCE032
40	32	91	14	16	F05 x 6,5	F07 x 8,5	PQCE040
50	40	97	14	16	F05 x 6,5	F07 x 8,5	PQCE050
63	50	114	14	16	F05 x 6,5	F07 x 8,5	PQCE063


*F04 x 5.5 upon request




MSKD

MSKD is a limit switch box with electromechanical or inductive micro switches to remotely signal the valve position (maximum 90° rotation). Manual valve installation is possible using the Power Quick actuation module. The box can be assembled on the TKD valve even if already installed on the system.

d	DN	А	Α ₁	В	B ₁	С	C ₁	Code electromechanical	Code inductive	Code Namur
20	15	58	85	132.5	29	88.5	134	MSKD1M	MSKD1I	MSKD1N
25	20	70.5	96	143.5	34.5	88.5	134	MSKD1M	MSKD1I	MSKD1N
32	25	74	101	148.5	39	88.5	134	MSKD1M	MSKD1I	MSKD1N
40	32	116	118	165.5	46	88.5	167	MSKD2M	MSKD2I	MSKD2N
50	40	122	124	171.5	52	88.5	167	MSKD2M	MSKD2I	MSKD2N
63	50	139	141	188.5	62	88.5	167	MSKD2M	MSKD2I	MSKD2N

Electromechanical

Inductive

Namur

WH = white; BK = black; BL = blue; BR = brown

Type switches	Flow rate	Lifetime [drives]	Rated operating	Rated voltage	Operating current	Voltage drop	Empty current	Protection rate
Electromechanical	250 V - 5 A	3 x 10 ⁷	-	-	-	-	-	IP65
Inductive	-	-	5 ÷ 36 V	-	4 ÷ 200 mA	< 4,6 V	< 0,8 mA	IP65
Namur*	-	_	7,5 ÷ 30 V DC**	8,2 V DC	< 30 mA**	-	-	IP65

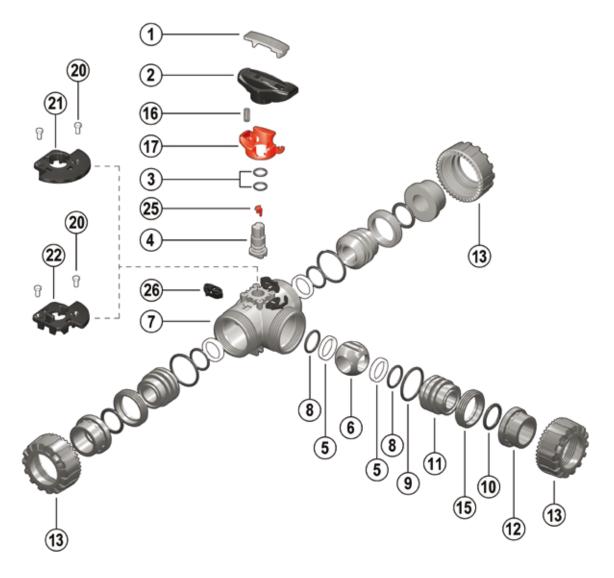
^{*} To be used with an amplifier ** Outside areas with explosion risks

FASTENING AND SUPPORTING

All valves, whether manual or actuated, must be adequately supported in many applications.

The TKD valve series is therefore provided with an integrated bracket that permits direct anchoring of the valve body without the need of other components.

Using standard threaded nuts (not included) made of stainless steel, you can anchor the valve on 4 fastening points.



d	DN	В	Н	L	J*
20	15	31.5	27	20	M4 x 6
25	20	40	30	20	M4 x 6
32	25	40	30	20	M4 x 6
40	32	50	35	20	M6 x 10
50	40	50	35	20	M6 x 10
63	50	60	40	20	M6 x 10

^{*} With threaded inserts

COMPONENTS

EXPLODED VIEW

- 1 · Handle insert (PVC-U 1)
- 2 · Handle (HIPVC 1)
- 3 · Stem O-ring (EPDM or FPM - 2)*
- 4 · Stem (PP-H 1)
- 5 · Ball seat (PTFE 4)*
- 6 · Ball (PP-H 1)
- 7 · Body (PP-H 1)
- 8 · Ball seat O-Rings (EPDM or FPM - 4)*

- 9 · Radial seal O-Ring (EPDM or FPM - 3)
- 10 · Socket seal O-Ring (EPDM or FPM - 3)*
- 11 · Ball seat carrier (PP-H 3)
- 12 · End connector (PP-H 3)*
- **13** · Union nut (PP-H 3)
- 15 · Threaded ring (PP-H 3)

- 16 · Spring SHKD accessory (Stainless steel - 1)**
- 17 · Handle safety block SHKD accessory (PP-GR 1)**
- 20 · Rivet for LTKD (POM 2)**
- 21 · LTKD 180° (POM 1)**
- 22 · LTKD 90° (POM 1)**
- **25** · Position indicator (POM 1)
- 26. DUAL BLOCK® (POM 3)

^{*} Spare parts

^{**} Accessories

The material of the component and the quantity supplied are indicated between brackets

DISASSEMBLY

- Isolate the valve from the line (release the pressure and empty the pipeline).
- 2) Unlock the union nuts by pressing the lever on the DUAL BLOCK* (26) along the axis and separate it from the union nut (fig. 1). It is also possible to completely remove the locking device from the valve body.
- 3) Unscrew the union nuts (13) and extract the body (7).
- 4) After turning the handle (2) to the position with the three arrows pointing at the three ports (for L-port ball with two arrows facing the ports a and b), extract the insert (1) from the handle (2) and insert the two protrusions in the corresponding apertures in the threaded rings (15), extracting the carriers (11) by turning counterclockwise.
- Extract the ball (6) from the central port being careful not to damage the seat surface.
- 6) Remove the PTFE ball seats (5) and O-Rings (8, 9, 10) from the carriers (11).
- 7) Pull the handle (2) upwards to remove it from the stem (4).
- 8) Press the stem (4) into the body and extract it.
- 9) Remove the PTFE ball seat (5) with relevant O-ring (8) from inside the valve body.
- 10) Remove the stem (4) O-rings (3) from their seats.

ASSEMBLY

- 1) Insert the O-rings (3) on the stem (4).
- Insert the O-ring (8) in the seat in the valve body and, next, the PTFE ball seat (5).
- Insert the stem (4), from the interior, in the body, being sure the three marks on the socket correspond to the three outlets.
- 4) Insert the ball (6) from the central port b, being careful that the three bores match the three outlets (for L-port ball, the two bores must match the a and b outlets).
- Insert the O-rings (8), PTFE ball seats (5), socket seal O-rings (10) and radial seal O-rings (9) in their seats on the carriers (11).
- 6) Insert the three carriers (11) with the relevant threaded rings (15), screwing in clockwise with the handle insert (1) and starting from the one on the central outlet b.
- Press the handle (2) on the stem (4), being careful to match the printed arrows with the lines on the stem (fig. 2-3).
- 8) Return the insert (1) in the handle (2)
- 9) Insert the valve between the end connectors (12) and tighten the union nuts (13), making sure that the socket seal O-rings (10) do not exit their seats.

Note: during assembly, it is advisable to lubricate the rubber seals. Mineral oils are not recommended for this task as they react aggressively with EPDM rubber.

Fig. 2

Fig. 3

Fig. 4

INSTALLATION

Before proceeding with installation, please follow these instructions carefully:

- 1) Check that the pipes to be connected to the valve are aligned in order to avoid mechanical stress on the threaded joints.
- 2) Check that the DUAL BLOCK® union nut locking device (26) is installed on the valve body.
- 3) To release the union nuts (13), axially press the release lever to separate the lock and then unscrew it in the counter-clockwise direction.
- 4) Unscrew the three union nuts (13) and insert them on the pipe segments.
- 5) Solvent weld or screw the end connectors (12) onto the pipe ends.
- 6) Position the valve body between the end connectors and fully tighten the union nuts (13) manually by rotating clockwise without using wrenches or other tools that could damage the union nut surface.
- 7) Lock the union nuts by returning the DUAL BLOCK® to its housing, pressing on it until the hinges lock on the nuts.
- 8) If necessary, support the pipework with FIP pipe clips or by means of the carrier built-into the valve itself (see paragraph "fastening and supporting").

The TKD valve can be equipped with a handle lock to prevent ball rotation (available as an accessory). When the block (16, 17) is installed, lift the lever (17) and rotate the handle.

A lock can also be installed on the handle to protect the system against tampering (fig. 4).

Seals can be adjusted using the extractable insert on the handle (fig. 5-6). After positioning the ball as in figure 7-8, using this insert as a tool you can adjust the seals by screwing in the carriers following the indicated sequence (fig. 7-8).

The seals can be adjusted later with the valve installed on the pipe by simply tightening the union nuts.

This "micro adjustment", only possible with FIP valves thanks to the patented "Seat stop system", allows the seal to be recovered where PTFE ball seats are worn due to a high number of manoeuvres.

Fig. 6

Fig. 7

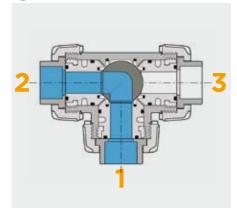
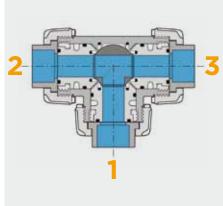
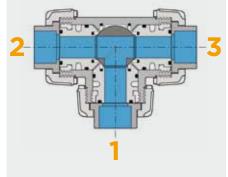




Fig. 8

WARNINGS

Always avoid sudden closing manoeuvres and protect the valve from accidental operations.

